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ABSTRACT  
Objective: The aim of the present study is to investigate the effect of nicardipine, a calcium channel blocker, on the neurotoxicity induced by 
intracerebroventricular (i.c.v.) iron injection in rats.  
Materials and Methods: Animals were divided into three groups; control, iron and iron+nicardipine groups. Rats in iron and iron+nicardipine groups 
received i.c.v. FeCl3, while rats in control group received the same volume of saline. All animals were kept alive for ten days following the operation 
and animals in iron+nicardipine group were injected intraperitoneally nicardipine (10 mg/kg/day) once a day during this period. After ten days, all rats 
were perfused intracardially and cerebellar tissues were stained with Cresyl violet. Means of total Purkinje cells numbers in the cerebellum were 
estimated using the optical fractionator counting method.  
Results: Means of total Purkinje cells numbers in the cerebellum as follows: 317182±9667, 209002±7836 and 265659±8291 in the control, iron and 
iron+nicardipine groups, respectively. Total number of Purkinje cells in iron and iron+nicardipine groups were significantly lower than control 
animals (p< 0.05). However, comparison between iron and iron+nicardipine groups revealed that nicardipine significantly attenuates the iron-induced 
Purkinje cell loss (p<0.05).  
Conclusion: It has been shown firstly in the present study that an excessive amount of iron has a toxic effect on cereballar Purkinje cell in rats and 
this deleterious effect is protected by nicardipine, a calcium channel blocker. ©2008, Firat University, Medical Faculty 
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ÖZET 

Sıçan Serebellumunda Demirin Đndüklediği Purkinje Hücre Kaybına Nikardipinin Koruyucu Etkisi: Stereolojik Bir Çalışma 
Amaç: Bu çalışmanın amacı, sıçanlarda, intraserebroventriküler (i.c.v.) olarak injekte edilen demirin indüklediği nörotoksisite üzerine bir kalsiyum 
kanal blokörü olan nikardipinin etkisini incelemektir.  
Gereç ve Yöntem: Hayvanlar kontrol, demir ve demir+nikardipin olmak üzere üç gruba ayrıldı. Demir ve demir+nikardipin grubuna i.c.v. olarak 
FeCl3, kontrol grubuna ise aynı hacimde salin verildi. Bütün hayvanlar operasyonu takiben on gün yaşatılırken bu esnada demir+nikardipin grubuna 
10 mg/kg/gün dozunda nikardipin intraperitoneal olarak verildi. Onuncu günde, sıçanların tamamı intrakardiyak olarak perfüze edildi ve serebellum 
dokuları kresil violet ile boyandı. Serebellumda ortalama toplam Purkinje hücre sayıları optik parçalama sayım metodu kullanılarak hesaplandı. 
Bulgular: Hücre sayıları kontrol, demir ve demir+nikardipin gruplarında sırasıyla 317182±9667, 209002±7836 ve 265659±8291 olarak bulundu. 
Total Purkinje hücresi sayısı, demir ve demir+nikardipin gruplarında kontrol grubuna göre anlamlı olarak daha azdı (p<0.05). Ancak, demir ve 
demir+nikardipin karşılaştırıldığında, nikardipin demirin indüklediği Purkinje hücre kaybını anlamlı olarak önlediği bulundu (p<0.05).  
Sonuç: Aşırı miktarda demirin sıçan serebellar Purkinje hücrelerine toksik etkisinin olduğu ve bu zararlı etkinin bir kalsiyum kanal blokörü olan 
nikardipin tarafından önlendiği sunulan çalışma ile ilk olarak gösterilmiştir. ©2008, Fırat Üniversitesi, Tıp Fakültesi 
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Iron is an essential mineral in humans and plays a crucial role 
in vital biochemical activities, such as oxygen sensing and 
transport, electron transfer, and catalysis. The human body 
contains approximately 45–55 mg/kg of body weight in adult 
women and men, respectively. Iron overload can result from 
either primary, genetic disorders that create an imbalance in 
iron metabolism, or secondary causes, factors that bypass 
normal iron homeostasis, such as repeated blood transfusions, 
or acute or chronic iron poisoning (1). When present in excess, 
iron poses a threat to cells and tissues, and therefore iron 
homeostasis has to be tightly controlled. 

Several neurogenerative disorders such as Parkinson’s 
and Alzheimer’s disease, or more rare conditions such as 
Huntington’s disease and Hallervorden–Spatz syndrome have 
been associated with misregulation of iron metabolism in the 
central nervous system (2). In these disorders, iron-induced 
oxidative stress, combined with defective antioxidant 
capacities, promotes neuronal death and neurodegeneration. 
However, it is still controversial whether the extensive brain 
iron accumulation is the initial pathogenic event, or a 
secondary effect. Moreover, the involvement of iron in the 
aforementioned disorders, provides a rationale for the 
development of metal-binding drugs (chelators) as viable new 
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therapeutic strategies.  

Willmore et al. (3) reported that subpial injections of iron 
salts lead to free radical formation and these free radicals cause 
disintegration of plasma membrane by lipid peroxidation (4). 
As a result of such disintegration, ionic gradients cannot be 
preserved sufficiently and this eventually leads to an excessive 
calcium ion influx into the cells (5) Elevated intracellular Ca2+ 
levels in neurons are thought to mediate the oxidative cellular 
death (6). Gaasch et al. (7) reported that voltage-gated calcium 
channels (VGCC) are an alternate route for iron entry into 
neuronal cells under conditions that promote cellular iron 
overload toxicity. This role may be aggravated in 
pathophysiologic conditions of iron overload. Iron uptake 
(similar to calcium uptake) is inhibited  by nimodipine, a 
specific L-type VGCC blocker, in a dose-dependent manner 
(7). In addition, it has been reported that nicardipine, a 
dihydropyridine calcium antagonist, decreased ischemic brain 
injury induced by the occlusion of the middle cerebral artery in 
rats (8) and cats (9). Signals for motor coordination and 
balance are coded in the rate and pattern of firing of cerebellar 
Purkinje neurons, the only neurons that project out of the 
cerebellar cortex. However, Purkinje cells are the most 
important targets in cerebellum for toxic substances such as 
ethanol (10) long-term nicotine exposure (11) and cadmium 
toxicity (12). There is no sufficient information in the current 
literature the effects of calcium channel blockers on 
quantitative aspects of cerebellar Purkinje cell loss induced by 
iron. In the present study we aimed to investigate the effects of 
nicardipine on iron-induced cerebellar Purkinje cell loss, using 
unbiased stereological techniques. 

MATERIALS and METHODS 

Animals 

Twenty-one adult male Wistar albino rats (220- 250 g) were 
divided into three groups as control (n=7), iron (n=7) and iron+ 
nicardipine (n=7). All animals were obtained from Medical and 
Surgical Research Faculty of Ondokuz Mayis University. All 
animals were kept in constant laboratory conditions and 
supplied with food and water ad-libidum. 

Operation 

Animals were kept away from food for 12 hours prior to 
surgery and all animals were weighted just before the surgical 
operation. Anesthesia was induced by i.p. injection of ketamine 
hydrochloride (100 mg/kg)+10 mg/kg xylazine. Animals were 
fixed to a stereotaxic apparatus and details of the surgical 
procedure can be seen in Bostanci et al. (13). Rats in the 
control group received 2.5 µl saline while rats in iron group 
received 200 mM (2.5 µl) FeCl3 (FeCl36H2O, Sigma, St. Louis, 
USA) (3). Rats in iron+nicardipine group received the same 
amount of FeCl3 and i.c.v. nicardipine (Sigma, St. Louis, USA) 
(1 µM, 2 µl). Then, incisions were sutured and incision area 
was cleaned using 10% povidon iodide (Aklar Chemistry, 
Ankara, Turkey) just prior the placement of the animals to their 
cages. All animals were survived for ten days following the 
surgery. Only the rats belonging to iron+nicardipine group 
received additional i.p. nicardipine treatment as 10 mg/kg/day 
for ten days (12).  

After ten days, all animals were perfused intracardially 
under deep urethane (Sigma, St. Louis, USA) anesthesia (1.25 
g/kg, i.p.) with 10% formaldehyde (Aklar Chemistry,Ankara, 
Turkey) and saline, buffered for pH=7.6. After the completion 
of the perfusion process all animals were decapitated, brains 

were removed immediately and placed in the same fixative for 
postfixation. After the cerebra and cerebelli were separated 
physically, cerebelli were processed using the standard 
histological techniques and embedded in paraplast (Sigma, St. 
Louis, USA) embedding media. Serial tissue sections obtained 
using a rotary microtome (Leica RM 2135) in horizontal plane 
with a section thickness of 40 µm. The slides were stored 
overnight in the oven (60 oC) and stained with Cresyl violet 
(Sigma, St. Louis, USA) staining. Approval of Ethical 
Committee of Ondokuz Mayis University has been obtained 
prior to experiments and all animal work was performed 
according to the Experimental Animal Care Rules of European 
Community Council. 

Section sampling and the determination of total 
Purkinje number 

The cytoarchitectonic characteristics of the Purkinje cell 
layer were identified using the criteria of Gundersen (14). 
According to the pilot study, 14-18 sections were sampled in a 
systematic random fashion (ssf: 1/7) out of a total of 120 
horizontal sections per individual cerebellum. First sections 
were chosen randomly from the first set of 7 sections 
containing the cerebellum and then the consecutive samples 
were selected with a fixed interval of 7 sections. 

The counting and analysis of Purkinje cells were 
performed with a stereology workstation using the optical 
fractionator counting method (CAST-GRID-Computer 
Assisted Stereological Toolbox-Olympus, Denmark) (15). Cell 
counts were done using a sampling scheme optimized for a 
total of approximately 500 cell counts per individual. 
Determined Purkinje sectional areas were scanned 
automatically using consecutive steps with 200x200 µm x-y 
size. Every step in this scanning was individually analyzed 
with optical dissector probes using 100x oil-objectives. During 
optical dissector application, an unbiased counting frame 
comprising the 20% of the total step area was used for particle 
sampling and counting. Thus, the area sampling fraction (asf) 
is determined as (587/40.000) µm2. 

According to previous pilot studies, a fixed dissector 
height of 10 µm was predetermined and used throughout the 
study. It was left a 5 µm for upper guard zone, applied particle 
counting through a 10 µm dissector height and measured the 
section thickness. All such measurements were done using a 
digital microcator (Hidenhein, Germany), incorporated in the 
stereological analysis system. Thus, the final sampling stage, 
generally called the thickness sampling fraction (tsf) was 
calculated by [Dissector Height]/[Mean Section Thickness]. 
Average section thickness was estimated for each section by 
measuring the thickness of every 10th field of counting with a 
random start and by averaging the measured thickness values 
for each section. The total average of section thickness was 
29±2 µm among all animals. After completing a throughout 
sampling for all sampled sections, properly sampled Purkinje 
cells were counted as dissector particles (Q-). Total number of 
cerebellar Purkinje cells (N) was then calculated using the 
following formulation: N = [1/ssf] x [1/asf] x [1/tsf] x ∑Q- 

Statistical analysis 

Statistical analysis was performed using SPSS statistical 
software package (version: 12.0). Differences between groups, 
the estimated number of the Purkinje cell, were analysed with 
one way ANOVA and Post Hoc Tukey tests. The P-level was 
set at P < 0.05. 
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BULGULAR 

Representative light micrographs of sections through the 
cerebellum from the different groups of rats are shown in Fig.1 
A–C. The mean±SEM total number of Purkinje cells, 
coefficient of variation (CV) and coefficient of error (CE) of 
control and experimental groups are presented in Table 1.  

After comparing iron group with control rats in iron group 
were appeared to have 34±4% less number of Purkinje cell 
than rats in control group and this difference was statistically 
significant (p<0.05), (Figure 2). Rats in iron+nicardipine group 
had 16±3% lower Purkinje cell numbers with respect to 
controls (p<0.05) (Fig.2). 

Table 1. Total Purkinje cell number in rat cerebellum.  

Groups                             Total Purkinje cell number                CV   CE 
                                                                    (N±SEM) 
Control (n=7)                     317 182 ± 9667         0.067  0.064 
Iron (n=7)   209 002± 7836*                        0.062  0.077 
Iron + Nicardipine (n=7)                 265 659 ± 8291* ‡                        0.072  0.068 

SEM; standard error of the mean, CV; coefficient of variation, CE; coefficient of error. *P<0.05 compared with control, ‡ P<0.05 
compared with iron- treated alone. 

 

Figure 1. The photomicrographs of cerebellar Purkinje cells. (A) 
Control, (B) Iron treatment, (C) Iron+nicardipine treatment and 
(D) a larged photomicrograph of Purkinje cells. The layers of the 
cerebellar cortex is showed on the photomicrograph A. Bar: 40 
µm (C) and 25 µm (D). GL: Granular cell layer; PL: Purkinje cell 
layer; ML: Molecular layer.  

 

Figure 2. The percentage changes in Purkinje cell numbers in 
iron-treated and iron+nicardipine treated rats compared with 
control rats. Each vertical line represents the standard error of 
the mean (S.E.M.), (n=7). *p<0.05 compared with control, 

&
 

p<0.05 compared with iron-treated alone. 

In addition, comparison between iron and 
iron+nicardipine groups revealed that nicardipine significantly 
attenuates the iron-induced neuron loss from 34 % to 16% and 
protects Purkinje cells against iron toxicity (p<0.05), (Fig.2). 

DISCUSSION  

The present study focused on the effect of a dihydropyridine 
(DHP) calcium antagonist, nicardipine, on intracerebro-
ventricular applied iron-induced Purkinje cell loss, using 
unbiased stereological techniques. This is the first study that 
demonstrates the neuoroprotective effect of nicardipine against 
iron toxicity on cerebellar Purkinje cells. 

We estimated that there are about 300-330 thousand 
Purkinje cells in the normal rat cerebellum using an unbiased 
stereological technique. This value is in good agreement with 
other researchers who have used similar advanced, relatively 
unbiased, stereological procedures as those employed in the 
present study (11,16). Purkinje cells play a vital role in the 
normal function of the cerebellum. However, it has been 
demonstrated that Purkinje cells are highly susceptible to a 
variety of pathological conditions and toxic substances such as 
ischaemia (17), ethanol (10), long-term nicotine exposure (11) 
and cadmium toxicity (12). Similarly, this study is exhibited 
also that intracerebroventricular iron administration has a 
neurotoxic effect for Purkinje cells in rat cerebellum. 

Although essential for cell function, increased tissue iron 
can promote tissue oxidative damage to which the brain is 
especially vulnerable (18). It has been reported that the subpial 
injection of iron salts causes the transient formation of free 
radicals (3). When the concentrations of free radicals exceed 
the normal levels, they lead to membrane peroxidation and 
membrane disintegration which start to bind the unsaturated 
bonds of fatty acids and cholesterol (4). This interruption of 
membrane integrity threatens the transmembrane differences of 
ionic concentrations and cations, resulting in an influx of 
extracellular ions, especially calcium begin to enter the cell (5). 
Thus, resulting excessive calcium influx is generally held 
responsible for triggering of epileptic discharges and cellular 
death (19). We have also demonstrated in previous studies that 
intracortically administrated iron causes hippocampal neuronal 
loss and a calcium channel blocker, flunarizine, attenuates the 
neurotoxic effects of iron (13).  

Strong evidence from studies in humans and animal 
models suggests that nicardipine increases cerebral blood flow 
(20), and it is used for the treatment of cerebral vasospasm 
(21). Purkinje cells have at least three types of voltage-gated 
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calcium channels; T-type, DHP-sensitive L-type, N-type. 
Nicardipine also prevents calcium ion influx into neurons by 
blocking L-type channels outside the membrane. Furthermore, 
in previous studies showed that nicardipine depressed 
penicillin induced epileptiform activity (22) and the Purkinje 
cell density was 16-23% less in nicardipine-treated group than 
control and cells were partially protected significantly from 
toxic effects of cadmium (12). Our results confirm the previous 
studies and demonstrate that the neuoroprotective effects of 
nicardipine against iron toxicicity on Purkinje cells. According 
to our findings, nicardipine attenuates significantly the iron-
induced Purkinje cell loss from 34% to 16%.  

In conclusion, iron-induced Purkinje cell loss was 
observed in this study and nicardipine protected the iron-
induced toxicity in rat cerebellum approximately from 34% to 
16%. This neuroprotective effect of nicardipine may be due to 
the prevention of lipid peroxidation as well as the prevention of 
excessive calcium influx into neurons and further research on 
this vulnerability hypothesis is needed to reveal the 
fundamental mechanisms of these processes. 
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